Împărțirea numerelor din două cifre este foarte asemănătoare cu divizarea numerelor dintr-o singură cifră, dar este puțin mai lungă și necesită practică. Deoarece majoritatea dintre noi nu memorăm tabelul de 47 de ori, trebuie să parcurgem procesul de divizare; cu toate acestea, există trucuri pe care le puteți învăța pentru a accelera lucrurile. De asemenea, veți deveni mai fluent cu practica. Nu vă descurajați dacă vă simțiți puțin leneși la început.
Etapa
Partea 1 din 2: Împărțirea la un număr din două cifre
Pasul 1. Uită-te la prima cifră a numărului mai mare
Scrieți problema ca diviziune de diviziune lungă. Ca și în cazul divizării simple, puteți începe prin a privi numărul mai mic și a întreba „Poate numărul să se încadreze în prima cifră a numărului mai mare?”
Spuneți că problema este 3472 15. Întrebați „Pot 15 să intre în 3?” Deoarece 15 este clar mai mare decât 3, răspunsul este „nu” și putem trece la pasul următor
Pasul 2. Uită-te la primele două cifre
Deoarece numerele din două cifre nu se pot încadra în numerele dintr-o singură cifră, ne vom uita la primele două cifre ale numărătorului, la fel ca în problemele obișnuite de divizare. Dacă aveți încă problema diviziunii imposibile, căutați primele trei cifre ale numărului, dar nu avem nevoie de acesta în acest exemplu:
15 pot intra în 34? Da, deci putem începe să calculăm răspunsul. (Primul număr nu trebuie să se potrivească perfect și trebuie doar să fie mai mic decât al doilea număr.)
Pasul 3. Ghici puțin
Aflați exact cât de mult se poate încadra primul număr în celelalte numere. S-ar putea să știți deja răspunsul, dar dacă nu, presupuneți și verificați răspunsul prin multiplicare.
-
Trebuie să rezolvăm 34 15 sau „câte 15 se pot încadra în 34”? Căutați un număr care poate fi înmulțit cu 15 pentru a obține un număr mai mic decât foarte aproape de 34:
- Se poate folosi 1? 15 x 1 = 15, care este mai mic decât 34, dar continuați să ghiciți.
- Se pot folosi 2? 15 x 2 = 30. Acest răspuns este încă mai mic decât 34, deci 2 este un răspuns mai bun decât 1.
- Se pot folosi 3? 15 x 3 = 45, care este mai mare decât 34. Acest număr este prea mare, astfel încât răspunsul este cu siguranță 2.
Pasul 4. Scrieți răspunsul deasupra ultimei cifre folosite
Dacă lucrați la această problemă ca diviziune de diviziune lungă, ar trebui să vă familiarizați cu acest pas.
Deoarece numărați 34 15, scrieți răspunsul dvs., 2, în linia de răspuns deasupra numărului "4."
Pasul 5. Înmulțiți răspunsul cu numărul mai mic
Acest pas este același ca în diviziunea regulată cu ordine lungă, cu excepția faptului că folosim un număr din două cifre.
Răspunsul dvs. este 2, iar numărul mai mic din problemă este 15, deci calculăm 2 x 15 = 30. Scrieți „30” sub „34”
Pasul 6. Scădeți ambele numere
Rezultatul înmulțirii anterioare este scris sub numărul de pornire mai mare (sau o parte din acesta). Faceți această parte ca o operație de scădere și scrieți răspunsul pe linia de sub ea.
Rezolvați 34 - 30 și scrieți răspunsul pe o nouă linie sub ea. Răspunsul este 4, care este „restul” după ce 15 este introdus în 34 de două ori și avem nevoie de el în pasul următor
Pasul 7. Coborâți următoarea cifră
Ca o problemă obișnuită de divizare, vom continua să lucrăm la următoarea cifră a răspunsului până când acesta este terminat.
Lăsați numărul 4 acolo unde este și scădeți „7” din „3472” pentru a avea acum 47
Pasul 8. Rezolvați următoarea problemă de divizare
Pentru a obține următoarea cifră, pur și simplu repetați aceiași pași ca mai sus pentru a aplica această nouă problemă. Puteți reveni la ghicire pentru a găsi răspunsul:
-
Trebuie să rezolvăm 47 15:
- Numărul 47 este mai mare decât ultimul nostru număr, astfel încât răspunsul va fi mai mare. Să încercăm patru: 15 x 4 = 60. Greșit, răspunsul este prea mare!
- Acum, să încercăm trei: 15 x 3 = 45. Acest rezultat este mai mic și foarte aproape de 47. Perfect.
- Răspunsul este 3 și îl scriem deasupra numărului "7" din linia de răspuns.
- Dacă aveți o problemă precum 13 15, unde numeratorul este mai mic decât numitorul, aruncați a treia cifră înainte de a o rezolva.
Pasul 9. Continuați să folosiți o divizare lungă
Repetați pașii de divizare lungi folosiți mai devreme pentru a multiplica răspunsul cu numărul mai mic, apoi scrieți rezultatul sub numărul mai mare, apoi scădeți pentru a găsi următorul rest.
- Amintiți-vă, tocmai am calculat 47 15 = 3 și acum dorim să găsim restul:
- 3 x 15 = 45 deci scrieți „45” sub 47.
- Rezolvați 47 - 45 = 2. Scrieți „2” sub 45.
Pasul 10. Găsiți ultima cifră
Ca și înainte, aducem următoarea cifră din problema inițială, astfel încât să putem rezolva problema următoarei diviziuni. Repetați pașii de mai sus până când găsiți fiecare cifră în răspuns.
- Obținem 2 15 ca următoare problemă, ceea ce nu are sens.
- Micșorați o cifră, astfel încât să obțineți acum 22 15.
- 15 pot merge la 22 o dată, așa că scrieți „1” la sfârșitul liniei de răspuns.
- Răspunsul nostru este acum 231.
Pasul 11. Găsiți restul
Faceți o ultimă scădere pentru a găsi restul final și am terminat. De fapt, dacă răspunsul la problema scăderii este 0, nici nu trebuie să scrieți restul.
- 1 x 15 = 15 deci scrieți 15 sub 22.
- Număr 22 - 15 = 7.
- Nu mai avem cifre de derivat, așa că pur și simplu scrieți „restul de 7” sau „S7” la sfârșitul răspunsului.
- Răspunsul final este: 3472 15 = 231 rămase 7
Partea 2 din 2: Ghici bine
Pasul 1. Rotunjește la cel mai apropiat zece
Uneori, numărul de numere din două cifre care se pot încadra într-un număr mai mare nu poate fi văzut cu ușurință. Un truc pentru a face mai ușor este rotunjirea unui număr la cel mai apropiat zece. Această metodă este bună pentru probleme de diviziune mai mici sau pentru unele probleme de diviziune lungă.
De exemplu, să presupunem că lucrăm la problema 143 27, dar ne este greu să ghicim numărul de 27 care se pot încadra în 143. Deocamdată, presupunem că problema este 143 30
Pasul 2. Numărați numerele mai mici cu degetele
În exemplul nostru, am putea număra 30 în loc de 27. Numărarea 30 este mai ușoară odată ce te obișnuiești: 30, 60, 90, 120, 150.
- Dacă tot aveți probleme, numărați multipli de 3 și puneți un 0 la final
- Numărați până obțineți un rezultat mai mare decât numărul mare din problema (143), apoi opriți-vă.
Pasul 3. Găsiți cele mai probabile două răspunsuri
Nu am ajuns exact la 143, dar există două numere care se apropie: 120 și 150. Să vedem câte degete contează pentru ao obține:
- 30 (un deget), 60 (două degete), 90 (trei degete), 120 (patru degete). Deci, 30 x patru = 120.
- 150 (cinci degete) până la 30 x cinci = 150.
- 4 și 5 sunt cele mai probabile răspunsuri la întrebările noastre.
Pasul 4. Testați ambele numere cu problema inițială
Acum că avem două presupuneri, să trecem la problema inițială, care este 143 27:
- 27 x 4 = 108
- 27 x 5 = 135
Pasul 5. Asigurați-vă că numerele nu se pot apropia
Deoarece ambele numere sunt apropiate și mai mici de 143, să încercăm să-l apropiem cu multiplicarea:
- 27 x 6 = 162. Acest număr este mai mare decât 143, deci nu poate fi răspunsul corect.
-
27 x 5 este cel mai apropiat fără a depăși 143 deci 143 27 =
Pasul 5. (plus 8 rămase pentru că 143 - 135 = 8.)
sfaturi
Dacă nu vă place să vă înmulțiți cu mâna atunci când faceți o împărțire lungă, încercați să împărțiți problema în mai multe cifre și să rezolvați fiecare secțiune din capul dvs. De exemplu, 14 x 16 = (14 x 10) + (14 x 6). Notați 14 x 10 = 140 pentru a nu uita. Apoi, calculați: 14 x 6 = (10 x 6) + (4 x 6). Rezultatele sunt 10 x 6 = 60 și 4 x 6 = 24. Adăugați 140 + 60 + 24 = 224 și veți obține răspunsul final
Avertizare
- Dacă, la un moment dat, scăderea produce un număr negativ, presupunerea ta este prea mare. Eliminați toți pașii și încercați să ghiciți numărul mai mic.
- Dacă, la un moment dat, scăderea are ca rezultat un număr mai mare decât numitorul, presupunerea dvs. nu este suficient de mare. Eliminați toți pașii și încercați să ghiciți numărul mai mare.