Cum să găsiți vârful unei ecuații pătratice: 10 pași

Cuprins:

Cum să găsiți vârful unei ecuații pătratice: 10 pași
Cum să găsiți vârful unei ecuații pătratice: 10 pași

Video: Cum să găsiți vârful unei ecuații pătratice: 10 pași

Video: Cum să găsiți vârful unei ecuații pătratice: 10 pași
Video: 3 metode de gestionare a emotiilor prin art terapie 2024, Noiembrie
Anonim

Vârful unei ecuații pătratice sau parabolice este punctul cel mai înalt sau cel mai mic al ecuației. Acest punct se află în interiorul planului simetric al parabolei; orice este în stânga parabolei este o reflectare perfectă a ceea ce este în dreapta. Dacă doriți să găsiți vârful unei ecuații pătratice, puteți utiliza formula vertexului sau completați pătratul.

Etapa

Metoda 1 din 2: Folosirea formulei de vârf

Găsiți vârful unei ecuații cuadratice Pasul 1
Găsiți vârful unei ecuații cuadratice Pasul 1

Pasul 1. Determinați valorile lui a, b și c

Într-o ecuație pătratică, partea x2 = a, partea x = b și constantă (partea fără variabile) = c. De exemplu, doriți să rezolvați următoarea ecuație: y = x2 + 9x + 18. În acest exemplu, a = 1, b = 9 și c = 18.

Găsiți vârful unei ecuații cuadratice Pasul 2
Găsiți vârful unei ecuații cuadratice Pasul 2

Pasul 2. Folosiți formula vârfului pentru a găsi valoarea x a vârfului

Vârful este, de asemenea, o ecuație simetrică. Formula pentru găsirea valorii x a vârfului unei ecuații pătratice este x = -b / 2a. Introduceți valoarea necesară pentru a găsi x. Introduceți valorile lui a și b. Notează cum funcționezi:

  • x = -b / 2a
  • x = - (9) / (2) (1)
  • x = -9 / 2
Găsiți vârful unei ecuații cuadratice Pasul 3
Găsiți vârful unei ecuații cuadratice Pasul 3

Pasul 3. Conectați valoarea lui x în ecuația originală pentru a obține valoarea lui y

Dacă știți deja valoarea lui x, conectați-o la ecuația originală pentru valoarea lui y. Vă puteți gândi la formula pentru găsirea vârfului unei ecuații pătratice ca (x, y) = [(-b / 2a), f (-b / 2a)]. Aceasta înseamnă că, pentru a găsi valoarea lui y, trebuie să găsiți valoarea lui x folosind o formulă și să o conectați din nou la ecuație. Iată cum să o faceți:

  • y = x2 + 9x + 18
  • y = (-9/2)2 + 9(-9/2) +18
  • y = 81/4 -81/2 + 18
  • y = 81/4 -162/4 + 72/4
  • y = (81 - 162 + 72) / 4
  • y = -9/4
Găsiți vârful unei ecuații cuadratice Pasul 4
Găsiți vârful unei ecuații cuadratice Pasul 4

Pasul 4. Notați valorile lui x și y ca perechi consecutive

Dacă știți deja că x = -9/2 și y = -9/4, scrieți-le ca perechi consecutive: (-9/2, -9/4). Vârful ecuației pătratice este (-9/2, -9/4). Dacă desenați această parabolă pe un grafic, acest punct este punctul minim / cel mai mic al parabolei, deoarece x2 pozitiv.

Metoda 2 din 2: Completați pătratul

Găsiți vârful unei ecuații cuadratice Pasul 5
Găsiți vârful unei ecuații cuadratice Pasul 5

Pasul 1. Notați ecuația

Completarea pătratului este un alt mod de a găsi vârful unei ecuații pătratice. Folosind această metodă, dacă lucrați până la capăt, puteți găsi coordonatele x și y direct, fără a fi nevoie să conectați coordonatele x în ecuația originală. Dacă doriți să rezolvați următoarea ecuație pătratică: x2 + 4x + 1 = 0.

Găsiți vârful unei ecuații cuadratice Pasul 6
Găsiți vârful unei ecuații cuadratice Pasul 6

Pasul 2. Împarte fiecare parte la coeficientul lui x2.

În acest caz, coeficientul lui x2 este 1, deci puteți sări peste acest pas. Împărțirea tuturor părților la 1 nu va schimba nimic.

Găsiți vârful unei ecuații cuadratice Pasul 7
Găsiți vârful unei ecuații cuadratice Pasul 7

Pasul 3. Mutați partea constantelor în partea dreaptă a ecuației

O constantă este partea care nu are coeficienți. În acest caz, constanta este 1. Mutați 1 pe cealaltă parte a ecuației scăzând 1 din ambele părți. Iată cum să o faceți:

  • X2 + 4x + 1 = 0
  • X2 + 4x + 1 -1 = 0 - 1
  • X2 + 4x = - 1
Găsiți vârful unei ecuații cuadratice Pasul 8
Găsiți vârful unei ecuații cuadratice Pasul 8

Pasul 4. Completați pătratul din partea stângă a ecuației

Pentru a face acest lucru, găsiți (b / 2)2 și adăugați rezultatul pe ambele părți ale ecuației. Introduceți 4 pentru b, deoarece 4x face parte din b în această ecuație.

  • (4/2)2 = 22 = 4. Acum, adăugați 4 la ambele părți ale ecuației pentru a obține așa ceva:

    • X2 + 4x + 4 = -1 + 4
    • X2 + 4x + 4 = 3
Găsiți vârful unei ecuații cuadratice Pasul 9
Găsiți vârful unei ecuații cuadratice Pasul 9

Pasul 5. Factorizați partea stângă a ecuației

Puteți vedea că x2 + 4x + 4 este un pătrat perfect. Această ecuație poate fi scrisă ca (x + 2)2 = 3

Găsiți vârful unei ecuații cuadratice Pasul 10
Găsiți vârful unei ecuații cuadratice Pasul 10

Pasul 6. Folosiți această formă pentru a găsi coordonatele x și y

Puteți găsi coordonata x făcând (x + 2)2 este egal cu zero. Deci, când (x + 2)2 = 0, care este valoarea lui x? Variabila x trebuie să fie -2 pentru a compensa +2, deci coordonata dvs. x este -2. Coordonata dvs. y este constanta de cealaltă parte a ecuației. Deci, y = 3. De asemenea, îl puteți scurta și înlocui numărul dintre paranteze pentru a obține coordonata x. Deci, vârful ecuației x2 + 4x + 1 = (-2, -3)

sfaturi

  • Determinați corect a, b și c.
  • Notează întotdeauna cum lucrezi. Acest lucru nu numai că ajută persoana care vă acordă un rating să știe dacă înțelegeți ce faceți, dar vă ajută și să verificați dacă ați făcut greșeli.
  • Pentru ca rezultatele să fie corecte, trebuie respectată ordinea operațiunilor de calcul.

Avertizare

  • Notează-l și verifică cum funcționezi!
  • Asigurați-vă că știți a, b și c - altfel răspunsul dvs. va fi greșit.
  • Nu vă lăsați frustrat - acest lucru poate necesita o anumită practică.

Recomandat: